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Abstract
The concept of self-Fourier functions, functions that equal their Fourier
transform, is considered using differential operators. The goal is to analyse
these functions and determine their properties without evaluating any Fourier, or
any other type, transform integrals. Certain known results are generalized and
the theory is extended to include integral and fractional-differential operators.
Moreover, it is shown that the problem of defining these functions, in its
original formulation, is equivalent to this method and in doing so, the concept
of a Fourier eigenoperator is introduced. We also describe a procedure for
applying this approach to general cyclic transforms.

PACS number: 02.30.Nw

The importance of Fourier transforms in many areas of physics and mathematics is
unquestionable. Indeed, because of its many properties the Fourier transform (FT) pair
has been an irreplaceable tool in the theory of boundary value problems (BVPs). We focus in
this letter on a special class of functions associated with Fourier transforms, the self-Fourier
functions (SFFs); these functions equal their FT. Applications of SFFs can be found in such
diverse areas such as optics [1, 2], quantum mechanics [3, 4], analytic number theory [5, 6]
and coherent laser design [7–9].

In general, SFFs are special solutions of the eigenvalue problem

F{f }(x) = µf (x) (1)

for µ = 1, where as usual

F{f }(x) = f̂ (x) ≡ 1√
2π

∫ ∞

−∞
f (ω) exp(iωx) dω.

The complete set of eigenvalues is µ = ±1,±i, corresponding to self-Fourier (µ = 1), skew-
Fourier (µ = −1), i-Fourier (µ = i) or skew-i-Fourier (µ = −i) functions, respectively. We
shall refer to this set of functions as Fourier eigenfunctions (FEFs). The complete set of SFFs
is then defined by the generating formula [10, 11]

f (x) = g(x) + ĝ(x) (2)
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where g(x) is an arbitrary, even function of x. The main complication here is that given the
function g(x) one needs to evaluate its FT, a task often difficult, if even possible. Moreover,
even given the function f (x) there exists an infinite family of functions g(x) that will satisfy
equation (2), making this decomposition non-unique. Until recently [11], no systematic way
of finding these functions existed.

In a recent article [11] new results were presented on the theory of FEFs by considering
linear differential operators that commute with the Fourier transform. The analysis was based
on the properties of the operator Lmn, defined as

Lmnf ≡ xm dnf

dxn
± dm

dxm
(xnf ) = xmf (n) ± (xnf )(m)

with (m, n) being an ordered pair of non-negative integers. It was shown that these operators
commute with the Fourier operator to a constant; that is,

F{Lmnf } = ±(−i)m+nLmn{Ff }. (3)

If a homogeneous BVP is formed by applying Lmn to a function f (x) and imposing appropriate
conditions of integrability or decay at infinity, then solutions can be found which satisfy these
conditions and are invariant under the Fourier transform. Thus the equations

xm dnf

dxn
± dm

dxm
(xnf ) = 0

will generate SFFs. The functions g(x) are now defined such that

g(x) = xmf (n) or g(x) = (xnf )(m).

This provides a method to define these generating functions from a given SFF f (x). Provided
m + n = 4k(2k), where k is an integer, the sum (difference) of the above terms will generate
another SFF from equation (2). The rest of the FEFs corresponding to other Fourier eigenvalues
(µ �= 1) can be generated in an entirely similar way. An example is

L+
22f ≡ 2x2f ′′ + 4xf ′ + 2f = 0

with |x|−1/2 cos(
√

3x/2) and |x|−1/2 sin(
√

3x/2) being the solutions . The cosine solution is
even and self-Fourier, while the sine solution is odd and i-Fourier. This generalizes to complex
component the previously known SFF |x|−1/2, which satisfies L+

11f = 0.
Now consider the possibility of negative integer values for (m, n). The requirement

f (±∞) = 0 is replaced by
∫ ∞
−∞ |f (x)| dx < ∞, allowing functions that are simply bounded

to be included in this formalism. The resulting expressions will reproduce the cases for
positive (m, n) values via a one-to-one mapping between the regimes. To see this, assume
(m, n) = (−M,−N) for some non-negative integers (M,N). The operator L(−M,−N)

generates the equation

L(−M,−N)f ≡ x−Mf (−N) ± (x−Nf )(−M) = 0 (4)

where negative-order differentiation is interpreted as repeated integration. If we define Q to be
either term in this expression, we can transform equation (4) into LNMQ = 0. For example,
substituting Q ≡ x−Mf (−N) yields

L(−M,−N)f = Q ± (x−N(xMQ)(N))(−M) = 0 ⇒
xNQ(M) ± (xMQ)(N) ≡ LNMQ = 0.

So L(−M,−N) maps to LNM . Thus Q and f = (xMQ)(N) will both be FEF solutions to these
equations, or equivalently, both f and Q = x−Mf (−N) will be FEFs. Similarly we can start
with the positive-index operator Lmn and transform it into L(−n,−m) with comparable results.
Hence each operator Lmn can generate FEFs, and solving Lmnf = 0 in general is equivalent to



Letter to the Editor L397

solving L(−n,−m)f = 0. The indices m and n can also be of opposite sign in this argument, in
which case both Lmn and L(−n,−m) will generate homogeneous integro-differential equations,
which can easily be converted to differential equations via simple differentiation.

The case m = −n is somewhat special since it remains invariant under the Q-substitution.
For example, taking Q = x−nf (n), the equation L(−n,n)f = 0 becomes L(−n,n)Q = 0. Hence
f,Q = (xnf )(−n), or Q = x−nf (n) satisfy the same equation and are all FEF. An example of
the general equivalence with negative index is

L+
(0,−2)f ≡

∫ (∫
f dx

)
dx + x−2f = 0

which is equivalent to L+
20Q = 0 under Q = ∫ ( ∫

f dx
)

dx or Q = x−2f this was shown to
have SFF solutions in [11]. The equation

L+
(−1,1)f ≡ x−1 df

dx
+

∫
(xf ) dx = 0

can be used to illustrate the special case m = −n. It is straightforward to verify that the
known SFF exp(ix2/2) satisfies this equation. The Gaussian exp(−x2/2), probably the most
common SFF, satisfies L−

(−1,1)f = 0.
Furthermore, through the definition of fractional-order derivatives, we can extend (m, n)

to any real values. The standard product-derivative transformation theorem for the Fourier
transform can be used to define derivatives of non-integer order [12], so that f (m)(x) is defined
to be the inverse transform of (−ix)mf̂ (x) for any real m. Thus equation (3) holds for any
real-ordered pair (m, n). An alternative definition of the fractional derivative generalizes the
Cauchy rule for repeated integration to non-integer orders. Interpretation of the expression
Lmnf for non-integer values of (m, n) will lead to Volterra-type integral equations. For
example, the operator L(0,1/2) yields the semi-differential equation

L(0,1/2)f ≡ d1/2

dx1/2
f ± x1/2f = 0 (5)

which is equivalent to

L(0,1/2)f ≡ 1√
π

d

dx

∫ x

0

f (t)

(x − t)1/2
dt ± x1/2f = 0 (6)

on the positive half-line. Equation (5) can be solved by generalized Frobenius-series methods
in conjunction with standard theorems of fractional calculus [13]. With a little further
manipulation, equation (6) can be solved by Neumann series methods. The even extension of
a suitably decaying or integrable solution will be a SFF on the whole real line. Hereafter and
unless otherwise specified, we shall assume that the pair (m, n) are real numbers.

We now proceed to show that the problem as stated in equation (1) and the equations
Lmnf = 0 are equivalent. To do this, we define the Fourier transform L̂ of a linear differential
operator L to be that operator whose action on the transformed function f̂ results from
transforming the action of L on f , i.e. L̂f ≡ L̂f̂ . Then a Fourier eigenoperator is a linear
differential operator which is formally invariant under the Fourier transform; namely, L̂ = cL

for some constant c, complex in general. With these definitions in mind, it is clear that the
operator Lmn is an eigenoperator of the Fourier transform:

L̂mnf = ±(−i)m+nLmnf̂ ≡ L̂mnf̂ ⇒ L̂mn = cLmn (7)

where the commuting constant is c = ±(−i)m+n. In terms of operators, this reads FLmn =
cLmnF . The equation L̂ = cL can be thought of as defining the eigenoperator problem
for the Fourier transform. Any operator satisfying this equation is an eigenoperator of the
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Fourier transform by virtue of commuting with the Fourier operator to the constant c, and its
nullspace functions and eigenfunctions are candidate eigenfunctions of the Fourier operator.
The essential point is that the linear differential operators Lmn that commute with F to a
constant are precisely the eigenoperators of F . The operator L−

02 ≡ d2/dx2 − x2, from the
eigenproblem for the Gauss–Hermite functions, is the most commonly cited example of such
an operator.

To further clarify the relationship between the operator Lmn and the Fourier eigenproblem
equation (1), we form the homogeneous equation Lmnf = 0. Then L̂mnf = cLmnf̂ = 0, so
the problem for f̂ is formally identical. Applying the same BCs to the problem for f̂ yields
f̂ = µf , since f and f̂ must be proportional. Note that the symmetry of f will determine
whether the Fourier eigenvalue µ is ±1 (even) or ± i (odd). Similarly, the eigenvalue problem
Lmnf = λf yields Lmnf̂ = (λ/c)f̂ . This shows that if f is an eigenfunction of Lmn with
eigenvalue λ, then f̂ is also an eigenfunction of Lmn with eigenvalue λ/c. However, unless
c = 1, we cannot invoke the proportionality argument relating f and f̂ ; the problems must
be formally equivalent with the same eigenvalue for this to hold. Furthermore, the eigenvalue
must be non-degenerate. Thus for L+

mn(L
−
mn), we need m + n = 4k(4k + 2), k is an integer, in

order to make the additional claim that the eigenfunction f of Lmn is also a FEF.
In addition, the operators Lmn give rise to self-adjoint boundary-value problems—in

fact, the two terms of Lmnf are virtually adjoints of each other to begin with. Since any
operator plus its adjoint is self-adjoint, Lmn + L

†
mn is a self-adjoint operator for general

(m, n). Regardless of the sign choice in L±
mn and the values of (m, n), we always have the

defining feature L̂mn = ±(−i)m+nLmn. If we consider such a self-adjoint operator L with
c = 1, then the operators L and F commute exactly since the commutator [L,F] ≡ LF −
FL = (1 − c)LF = 0. Also, since F−1 = F †, the Fourier operator is unitary. A standard
result in operator theory states that a pair of commuting self-adjoint or unitary operators shares
a common set of eigenfunctions. Thus L and F share a common set of eigenfunctions, as we
have shown above.

Finally, we propose a general framework for finding the eigenfunctions of a periodic
linear transform by finding the eigenoperators of this transform. A transform T is N-periodic
or N-cyclic, if its application N times in succession to a function f reproduces that function.
Several such transforms with optical applications were briefly considered in [2], [14] and [15]
along with their eigenfunctions. The eigenproblem for such a transform gives

Tf = µf ⇒ T Nf = µNf ⇒ µN = 1

since T N ≡ I , the identity operator. Hence the eigenvalues of T are precisely the Nth
roots of unity. Let A0 be a linear differential operator, and let A1, . . . , AN−1 be defined by
T Ak = cAk+1 for some complex constant c, with 0 � k � N − 1; we take AN = A0. Then
Ak = T kA0/c

k . If we then define

L ≡
N−1∑
k=0

γkAk =
N−1∑
k=0

γk

T kA0

ck

with weighting coefficients γk , and consider the action of T on L, we have

T L =
N−1∑
k=0

γkT Ak =
N−1∑
k=0

γk

T k+1A0

ck
=

N−1∑
k=0

γkc
k+1 Ak+1

ck
= c

N−1∑
k=0

γkAk+1

since T is linear. Requiring L and T to commute to the constant c gives the fundamental
commutation relation T L = cLT (L̂ = cL). This relation holds if γ0 = γ1 = · · · = γN−1.
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Since L is linear we may take γ0 = 1 without loss of generality. Hence the operators
L = ∑N−1

k=0 Ak all commute with T to their respective constant c. These commuting operators
L are precisely the eigenoperators of T. As for the possible values of c, we apply T N−1 to both
sides of the fundamental commutation relation to obtain

T L = cLT ⇒ L = cT N−1(LT ) = cNL(T N) = cNL ⇒ cN = 1.

So the commuting constant c is itself an eigenvalue of the transform T.
We may invoke the discussion above to conclude that the equation Lf = 0 will generate

solutions which are candidate eigenfunctions of T: Tf = µf , subject to requirements of
transformability under T. As for the eigenproblem in L, we find that if f is an eigenfunction
of L with eigenvalue λ, then Tf is also an eigenfunction of L with eigenvalue λ/c. However,
unless c = 1, we cannot conclude anything further. Only if c = 1, and the eigenvalue λ is
simple, can we infer that the L-eigenfunction f is also a T-eigenfunction. If we specialize
these results to the Fourier transform T = F , then

N = 4, c4 = 1, A0 = xm dn

dxn
, A1 = (−i)m+n

c

dm

dxm
xn,

A2 =
(

(−i)m+n

c

)2

A0, A3 =
(

(−i)m+n

c

)2

A1.

Choosing c = ±(−i)m+n yields A2 = A0, A3 = A1; ignoring duplicated terms, the resulting
eigenoperator L = A0 + A1 = xmf (n) ± (xnf )(m) is precisely the operator Lmn that we have
considered in our analysis. On the other hand, choosing c = ±i(−i)m+n yields A2 = −A0,
A3 = −A1 and all terms in L cancel. The results above can easily be specialized to the other
transforms considered in [2] and [14].

Finally we note that there is nothing inherently special about the transform eigenvalue
µ = 1; the discussion in this letter can be modified in a straightforward way to correspond
to eigenfunctions of F (or the more general T) with whatever eigenvalue µ one desires.
Eigenfunctions of T can therefore be determined without evaluating any T-transforms of
generating functions.

To summarize, we have generalized the method presented in [11] to analyse and
characterize eigenfunctions of the Fourier transform. The use of differential eigenoperators
of positive, negative and fractional order allows one to study these functions without having
to evaluate any transform integrals. The same approach was finally shown to have useful
application in the case of any general linear cyclic transform.
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